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Assessment of system dysfunction in the brain through 
MRI-based connectomics
Massimo Filippi, Martijn P van den Heuvel, Alexander Fornito, Yong He, Hilleke E Hulshoff  Pol, Federica Agosta, Giancarlo Comi, Maria A Rocca

Network-based analysis of structural and functional connections has provided a new technique to study the brains of 
healthy people and patients with neurological and psychiatric disorders. Graph theory provides a powerful method to 
quantitatively describe the topological organisation of brain connectivity. With such a framework, the brain can be 
depicted as a set of nodes connected by edges. Distinct modifi cations of network topological organisation in the brain 
have been identifi ed during development and normal ageing, whereas disrupted functional and structural connectivities 
have been associated with several neurological and psychiatric disorders, including dementia, amyotrophic lateral 
sclerosis, multiple sclerosis, and schizophrenia. These assessments have improved understanding of the clinical 
manifestations noted in these patients, including disability and cognitive impairment. Future network-based research 
might enable indentifi cation of diff erent stages of disorders, subtypes for cognitive impairment, and connectivity 
profi les associated with diff erent clinical outcomes.

Introduction
Brain function depends on local processing of 
information and eff ective global communication and 
integration of information. Attempts to comprehensively 
map the neural connections supporting these inter-
actions—the so-called connectome1,2—are motivated by 
the notion that brain function does not depend solely on 
the properties of individual regions, but rather emerges 
from interaction patterns across the entire network.

Present estimates suggest that the human brain consists 
of about 89 billion neurons, with 1000–10 000 times as 
many synapses.3 However, similar to the notion that 
neurons form a network at the microscopic level, at the 
macroscopic level large-scale bundles of axonal projections 
interconnect brain areas and form a macroscopic network 
of white matter pathways that enable functional 
communication between distinct, anatomically separated 
regions of the brain. Recent advances in MRI enable 
imaging of both the structural and functional connections 
of this large-scale neural system, thus enabling effi  cient 
mapping of connectivity across the entire brain.4 This 
approach has led to mapping of developmental trajectories 
of brain networks and of modifi cation of these networks 
during normal ageing. Because cognitive and behavioural 
functions rely on large-scale network interactions,5 
mapping of the structural and functional connectome in 
the brain will probably help to clarify fundamental 
pathophysiological aspects of neurological and psychiatric 
disorders. For example, connectomic approaches lend 
support to longstanding theories that schizophrenia is a 
disconnection syndrome,6,7 and have yielded new insights 
into the progressive changes associated with neuro-
degeneration.8–10 

In this Review, we summarise the methodological 
aspects related to graph theoretical analysis, the key 
mathematical framework for much of this research, and 
provide an up-to-date summary of modifi cations of brain 
network topological organisation associated with normal 
development and ageing, and of how these networks are 
perturbed in the course of brain disorders.

Measurement of brain connectivity
Brain structural network analyses can be constructed 
from correlations among grey matter volume 
measurements in structural MRI data and from quanti-
fi cation of white matter connections with diff usion 
tensor imaging. This latter technique enables the 
identifi cation of large-scale white matter pathways in 
vivo, by measure ment of the magnitude and direction of 
the restricted diff usion of water molecules in brain 
tissue. Within white matter, the diff usion of water 
molecules is restricted to the axonal bundles, hindering 
their move ment transverse to the axons. By mapping the 
diff usion profi le at each point in the brain, white matter 
pathways can be reconstructed from the main direction 
of diff usion between points. Although early studies using 
diff usion tensor imaging were focused mostly on the 
mapping of an individual white matter tract, the specialty 
of magnetic resonance connectomics aims to map all 
(measurable) pathways of the human brain and analyse 
the spatial and topological organisation of the resulting 
macro description of the connectome (fi gure 1).4,11 The 
brain regions interconnected by these pathways can be 
defi ned in various ways (eg, based on acquisition 
protocol, template choice, etc) and at several 
resolutions.12,13

Although the term connectome was initially invoked to 
describe structural brain connectivity,1 it has since been 
adapted to refer to maps of both structural and functional 
interactions between brain regions.14 Although these 
maps are commonly acquired with MRI, other 
modalitites—eg, electroencephalography (EEG) and 
magneto encephalography—can also be used to measure 
the functional connectivity in the brain with high temporal 
resolution,15 albeit at relatively low spatial resolution. For 
this reason, whole-brain functional interactions have been 
assessed most commonly with use of blood-oxygenation-
level-dependent functional MRI (fMRI). Such analyses fall 
into two broad classes: functional connectivity and 
eff ective connectivity. Functional connectivity refers to a 
statistical dependence between haemodynamic signals 
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recorded from spatially distinct regions of the brain, and 
is most commonly measured with the correlation 
coeffi  cient.16 Eff ective connectivity refers to the causal 
eff ect that one neural system has on another, and is 
modelled at the neuronal rather than the haemodynamic 
level of neuronal interactions.17,18 The connectome is an 
inherently directed network (ie, activity in one region 

eff ects changes in another region); therefore, modelling of 
connectome dynamics is desirable,19 particularly because 
some measures of functional connectivity that are based 
purely on time series derived from fMRI (haemodynamic) 
data can represent simplifi ed (un directed) approximations 
that distort the true functional architecture.18 Techniques 
such as dynamic causal modelling for fMRI explicitly 
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Figure 1: I  llustration of how a connectomic map is generated with MRI
(A) Maps of anatomical connectivity can be generated with diff usion tensor imaging (left); maps of functional connectivity can be generated with fMRI (right). 
(B) Network nodes, corresponding to diff erent brain regions, are identifi ed by division of the brain into sections with a range of strategies—eg, a priori anatomical 
templates (left), random division (middle), and functionally defi ned regions of interest (right). (C) After defi nition of brain regions, inter-regional connectivity is typically 
measured with either whole-brain tractography for d iff usion tensor imaging (left) or analysis of statistical dependencies in regional-activity time courses for fMRI (right). 
(D) After some measure of connectivity has been calculated for every pair of brain regions, connectome architecture can be represented by a connectivity matrix 
encoding the strength and type of connectivity between each regional pair. In MRI studies, these matrices are typically symmetric (ie, connections are undirected), 
weighted (ie, variations in the strength of inter-regional connectivity are captured), and unthresholded (ie, the values are continuous, with few zero entries; left). 
A threshold is usually applied to distinguish real from spurious connections (middle), and to binarise the resulting matrix to encode the presence or absence of a 
connection (right). fMRI=functional MRI. Figure adapted from Fornito and colleagues,7 by permission of Elsevier. 
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model the neuronal changes that cause the haemodynamic 
signals,20,21 but are computationally intensive and have 
traditionally been applied only to small subnetworks of 
brain regions. Recent advances in dynamic causal 
modelling, which enable modelling of stochastic neural 
dynamics,22 and effi  cient methods to select the best model 
from a wide range of candidates23 hold promise for the 
application of these techniques to large-scale networks. 
However, at present diff usion imaging cannot diff erentiate 
between aff erent and eff erent anatomical connectivity. 
Another important distinction in functional connectomics 
is made between resting-state and task-related functional 
connectivity.19 Resting-state functional connectivity is 
assessed as participants lie in the scanner without 
engaging in an explicit task; task-related functional activity 
refers to task-induced changes in brain network dynamics. 
Isolation of task-related functional connectivity needs 
consideration of how task stimuli modulate brain activity.24

Analysis of the connectome with graph theory
Once connectivity between brain regions has been 
determined, a formal description of the network is 
needed to express its local and global properties (fi gure 1). 
A neural network can be described with graph theory as a 
graph (G), consisting of a collection of nodes (V), such as 
brain regions, and connections or edges (E), expressing 
the interactions between the nodes (structural or 
functional connections, fi gure 2). On the basis of such a 
formal description of a neural network, constructs from 
graph theory can be used to describe several properties of 
the network’s architecture. Commonly examined graph 
metrics in brain connectomics include degree, clustering, 
global effi  ciency, and modularity. The degree of a node 
(or nodal strength in a weighted graph when information 
about the strength of the connections is included; 
fi gure 2) is defi ned as the node’s number of connections, 
and provides a metric of the eff ect that a node has on the 
overall network infra structure. Nodes with high degrees 
and an overall central position in a network’s topological 
organisation are often described as hubs. The level of 
clustering or local effi  ciency expresses the level of local 
connectedness of a network, with high levels of clustering 
interpreted as high levels of local organisation of the 
network (fi gure 2). In addition to clustering, the level of 
modular organi sation expresses a network’s community 
structure, often interpreted as a metric of information 
segregation in neural networks. Furthermore, the level of 
global effi  ciency, calculated as the inverse of the number 
of steps (ie, shortest path length) needed to travel 
between each pair of nodes in the network, expresses the 
effi  cacy of the network to communicate between its 
remote parts (ie, the degree to which inter-regional 
communication is globally integrated; fi gure 2). 

Findings of imaging studies examining the connectivity 
structure of the human brain have shown several aspects 
that contribute to effi  cient communication architecture, 
including economical (ie, sparse, low-volume, and thus 

low-cost) wiring, high levels of local clustering and 
community formation (indicative of local neural 
segregation), and short path lengths (suggestive of the 
ability to effi  ciently integrate information between 
subparts of the system, together with the formation of a 
small set of centrally placed communication hubs). This 
economical yet effi  cient communication architecture is 
crucial for healthy brain function,25 is under genetic 
control,26,27 and has an important role in cognitive 
abilities.28 Conversely, disruption to the wiring of the 
connectome probably aff ects both network topological 
organisation and function.

The accuracy of any attempt to model the connectome 
will be aff ected by the inherent limitations of the imaging 
techniques used.29–31 For example, fi bre tracking based on 
diff usion-weighted imaging (in particular, diff usion 
tensor imaging) is hindered at points where information 
about white matter directionality is scarce (such as where 
several tracts cross), resulting in an incomplete 
reconstruction of tracts and a general under-represention 
of long-distance connections in the brain. Under-
representation of long-range brain tracts, leading to a 
sparse brain network, probably aff ects computed graph 
metrics such as local clustering and the computation of 
the shortest path length between nodes. High-angular-
resolution diff usion-imaging approaches, involving the 
acquisition of many diff usion directions, might overcome 
some of these diffi  culties, but the long acquisition times 
(>10 min) needed for these types of diff usion scans 
reduces their usefulness in a clinical setting. Additionally, 
fMRI studies of connectome dynamics can be aff ected by 
head motion,32,33 physiology,34 preprocessing choices,35 the 
measure used to quantify functional connectivity,16,36 and 
diff erences in mental state.37 Thus, the available imaging 
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Figure 2: Summary of the main measures estimated with graph analysis
(A) A graph is a mathematical description of a network, consisting of a collection of nodes and connections. 
(B) A weighted graph includes information about the strength of the connections. (C–F) Local and global metrics 
can provide insight into the topological organisation of a network. (C) The clustering coeffi  cient describes the 
tendency of nodes to form local triangles, providing insight into the local organisation of the network. (D) The 
shortest path length describes the minimum number of steps needed to travel between two nodes, and provides 
insight into the capacity of the network to communicate between remote regions. (E) The degree of a node 
describes its number of connections. The existence of a small set of high-degree nodes with a central position in 
the network can suggest the existence of hub nodes. (F) High-level connectivity between hub nodes can suggest 
the existence of a central so-called rich club within the overall network structure.
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techniques for charac terisation of connectome structure 
and brain dynamics remain approximations that should 
be interpreted with respect to their limitations.19

Graph theoretical models of brain connectivity
Normal development
The defi nition of the trajectories of maturation and 
ageing for functional and structural topological 
organisation networks in the brain in healthy individuals 
is an essential step to understand age-specifi c expression 
of neurological and psychiatric disorders.

Graph theoretical methods have been applied to 
resting-state fMRI data from healthy people aged 
7–31 years to investigate the maturation of control 
networks (which have a role in attentional control) and 
default mode networks (which contribute to internally 
directed mental activity).38,39 In children, the control 
network was more integrated than was that of adults and 
was made up of a single system, by contrast with the 
adult confi guration, which was characterised by a dual-
network structure consisting of cingulo-opercular and 
fronto parietal networks. In other words, children have 
less between-network segregation and more within-
network connectivity than adults. The default mode 
network, which contains a set of regions usually 
deactivated during goal-oriented tasks, was only sparsely 
connected in children, whereas adults had a cohesive, 
integrated network; nearly all developmental changes in 
correlation strengths among default mode network 
regions were increased and mainly occurred in an 
anterior–posterior orientation. By contrast, the 
developmental pattern of the control network resulted in 
both increases and decreases in diff erent regions. The 
same investigators studied the development of whole-
brain functional networks in 8–25 year olds.40 They noted 
that, although the modular structure was built from 
8 years of age, the modules changed substantially from 
being in anatomical proximity to a distributed 
architecture, which grouped regions mainly by their 
functional roles. Additionally, an optimised small-world 
structure (characterised by high clustering coeffi  cients 
and short path lengths) was present and conserved 
through development, suggesting that the functional 
networks in children were as effi  cient for both global and 
local information transfer as were those in adults. These 
fi ndings have been replicated by another study of resting-
state fMRI,41 which also showed signifi cantly decreased 
subcortical-cortical connectivity and increased cortico-
cortical connectivity in the developing brain. The fi ndings 
of both these studies showed increased long-range 
connections and decreased short-range connections, 
which provides crucial evidence for segregation and 
integration processes at a system level during brain 
development. Similar fi ndings were obtained with EEG.42

Intriguingly, patterns in resting-state functional 
connectivity, extracted by multivariate analysis based on 
support-vector machines (learning modules with 

associated learning algorithms that analyse data and 
recognise patterns), can be used to make accurate 
predictions about individuals’ brain maturity across 
development.43 With analysis of more than one voxel at 
once, multivariate pattern analysis can help to 
diff erentiate groups (eg, patients from healthy controls) 
at an individual level, thus complementing the fi ndings 
of previous studies of group-level statistical analysis. 
Hwang and colleagues44 reported that hub locations and 
architecture were consistent from 10 to 20 years of age, 
whereas substantial changes occurred to the connectivity 
linking hub and non-hub regions during this time. The 
eff ects of sex diff erences on whole-brain functional 
networks have been explored in healthy children aged 
6–18 years;45 boys had higher global effi  ciency and shorter 
path lengths than did girls, with regional diff erences 
located mainly in the default mode network, language, 
and visual areas. This fi nding is consistent with the 
notion that cognitive and emotional development diff ers 
between girls and boys, particularly in visuospatial, 
language, and emotion processing areas of the brain. 
Findings from a study of 12-year-old monozygotic and 
dizygotic twins showed that global network effi  ciency 
was under genetic control.46 Functional brain networks in 
infancy were also studied.47 2-week-old infants have only 
primitive and incomplete default mode networks, 
whereas, after a substantial increase in connectivity, the 
default mode network at 2 years of age is similar to that 
of adults. Whole-brain functional networks in the infant 
brain already have functional hubs, located mainly in 
primary sensory and motor areas, which are distinct 
from the hub distribution of adults in the heteromodal 
association cortex (fi gure 3).47 Findings from another 
study of resting-state fMRI showed that functional brain 
networks had small-world topological organisation 
immediately after birth, and that network effi  ciency and 
resilience substantially improved up to 2 years of age.48

The development of structural brain networks has also 
been investigated. Although the brain structural networks 
of 2-month-old infants already have economic, small-
world topological organisation and non-random modular 
organisation, network effi  ciency and modularity 
signifi cantly increase with development; by 2 years of age, 
the pattern is similar to that of adults.49 Raznahan and 
colleagues50 proposed a new method to measure the 
maturation of structural networks by computation of 
inter-regional correlations of rates of anatomical change, 
on the basis of structural analysis of longitudinal MRI 
data from the developing brain. The structural 
maturational network showed a default mode network 
and sex diff erences within a frontopolar-centred 
prefrontal system (implicated in complex decision 
making). Girls had increased connectivity between the 
frontopolar prefrontal system and the dorsolateral and 
ventrolateral prefrontal cortex compared with boys. With 
use of diff usion tensor imaging tractography, the white 
matter structural network showed small-world 
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architecture and modular structure at birth. During 
development from 2 months to 2 years of age, the brain 
network increased in effi  ciency and evolved progressively 
from a local connectivity pattern to a distributed and 
functionally based connectivity pattern, with signifi cantly 
increased fi bre length.51 A study of developmental changes 
in children aged 18 months to 18 years investigated the 
late development of white matter networks.52 The 
researchers reported that global network effi  ciency and 
nodal strength (ie, the total level of connectivity of a node) 
signifi cantly increased and clustering decreased with 
development up to 18 years of age, whereas small-world 
architecture, major structural modules, and hubs were in 
place by 2 years of age. Another diff usion tensor imaging 
study53 that included 439 individuals aged 12–30 years 
showed that clustering and modularity decreased, and 
global effi  ciency increased, between 12 and 30 years of 
age, suggesting that networks increasingly integrate 
during development. Moreover, fi bre density decreased 
disproportionately overall across diff erent brain regions: 
the frontal cortex had a disproportionate number of 
decreases whereas the temporal cortex had a dis-
proportionate number of increases.

Normal ageing
Functional and structural MRI studies of the eff ects of 
ageing on brain topological organisation have provided 
consistent and reproducible results. Data from resting-
state fMRI has shown that ageing results in changes in 
the balance of the network’s cost of wiring (the number of 
edges or connections in the network) and communication 
effi  ciency (defi ned as the minimum path length between 
regions) in older people, with detrimental eff ects located 
mainly in the frontal and temporal cortical and subcortical 
regions.54 Findings from another study55 showed that the 
resting-state functional connectivity of both the default 
mode network and the dorsal attention network decreased 
with ageing, and that long-range connections were more 
susceptible to ageing eff ects than were short-range 
connections. Other investigators also showed a decrease 
in default mode network connectivity (eg, in the precuneus 
and posterior cingulate regions) with ageing. Findings 
from a study with support vector machines56 identifi ed 
modifi cations of connectivity in the sensorimotor and 
cingulo-opercular networks as distinguishing character-
istics of age-related reorganisation.

Findings of studies examining ageing eff ects on the 
topological properties of structural networks showed that 
the economical small-world and modular structure was 
consistent across ages (18–80 years). The local effi  ciency 
decreased at fi rst but then increased, whereas global 
effi  ciency increased then decreased with ageing.57 
Additionally, elderly people had lower nodal centrality for 
several brain regions, including the hippocampus, 
insula, posterior cingulum, and transverse temporal 
gyrus.58 The modular structure of structural covariance 
networks tends to become segregated with ageing.59 

Findings from a study60 of diff usion tensor imaging 
showed that structural covariance networks kept the 
small-world and hub patterns through the ageing process 
from 19 to 85 years, whereas local effi  ciency decreased 
and the overall connectivity reduced. Sex eff ects on both 
global and regional properties were also detected. Age-
related decreases in global effi  ciency correlate with 
decreases in specifi c cognitive abilities, including 
processing speed and visuospatial and executive 
functions. Decreases in local clustering coeffi  cients (local 
interconnectivity) in the precuneus, medial orbitofrontal 
cortex, and lateral parietal cortex are accelerated in 
carriers of the APOE*ε4 allele.61

Neurodegenerative disorders
Many neurological and psychiatric disorders can be 
described as disconnectivity syndromes, because their 
symptoms and clinical manifestations can be related to 
disrupted integration of spatially distributed regions of 
the brain that are part of large-scale networks subserving 
specifi c functions. Therefore, the use of graph theory 
might provide new ways to characterise groups of 
patients and disorders.
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Figure 3: The pattern of hubs in adults and infants
The spatial distribution of candidates for cortical hubs in adults (A) and infants (B), based on the degree centrality 
measure (expressed as Z scores). Cortical hubs were mainly located in the heteromodal association cortex in adults—
eg, the ventrolateral and posterior medial parietal cortex, medial prefrontal cortex, the insular region, and the 
temporal cortex. In infants, most cortical hubs were located in the homomodal cortex (particularly in the auditory, 
visual, and sensorimotor areas), and to a lesser extent in the prefrontal cortex. Figure adapted from Fransson et al,47 
by permission of Oxford University Press.
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Alzheimer’s disease and other dementias
Many studies have used graph theoretical analysis in 
patients with Alzheimer’s disease, the most prevalent 
type of dementia. The site of amyloid β deposition in 
patients with Alzheimer’s disease correlates with the 
location of major hubs, as defi ned by graph theoretical 
analysis of functional connectivity in healthy adults.62 
These regions include the posterior cingulate cortex and 
precuneus, the inferior parietal lobule, and the medial 
frontal cortex, suggesting that hubs are preferentially 
aff ected in the progression of Alzheimer’s disease 
(fi gure 4).62 Furthermore, convergent evidence from 
methodologically disparate studies using MRI or EEG 
and magnetoencephalography suggests that Alzheimer’s 
disease is associated with perturbations of the 
organisation of small-world networks in the brain.63–67

Findings from a study of fMRI graph analysis in mild 
Alzheimer’s disease65 suggest that loss of small-world 
network properties might provide a clinically useful 
diagnostic marker; clustering was reduced at a global 
and local level (in both hippocampi), and global 
clustering could be used to discriminate between 
patients with Alzheimer’s disease and healthy elderly 
people, with a relatively high sensitivity (72%) and 
specifi city (78%). The investigators of an fMRI study64 
reported that the characteristic path length in brains of 

patients with Alzheimer’s disease was closer to 
theoretical values of random networks than to those of 
controls. Decreased functional connectivity in the 
parietal and occipital regions and increased connectivity 
in the frontal cortices and corpus striatum were also 
reported.64 Decreased global effi  ciency and increased 
local effi  ciency were reported in patients with moderate 
Alzheimer’s disease, with the altered brain regions 
located mainly in the default mode network, temporal 
lobe, and subcortical regions.68

Abnormal topological properties have been described 
in the structural brain networks of patients with 
Alzheimer’s disease with use of structural imaging 
techniques.63 Compared with controls, patients with 
Alzheimer’s disease had increased global clustering and 
path lengths, in addition to decreased centrality (the 
number of shortest paths between any two nodes that 
run through a given node) of the classic hubs (ie, the 
temporal and parietal heteromodal cortices), and 
increased centrality of the unimodal association cortex 
(ie, the lingual gyrus, lateral occipitotemporal gyrus, and 
paralimbic regions). The global clustering coeffi  cient and 
path lengths of structural networks in individuals with 
mild cognitive impairment were intermediate between 
those of patients with Alzheimer’s disease and healthy 
elderly controls.69 Additionally, compared with controls, 
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F igure 4: Cortical hubs shown by functional connectivity, and their relation to Alzheimer’s disease
(A) Spatial location of cortical hubs from 127 healthy individuals, as defi ned by graph analysis of fMRI data. Prominent hubs are located in the posterior cingulate, 
lateral temporal, lateral parietal, and medial or lateral prefrontal cortices. The colour bar shows the Z score of degree. (B) The pattern of amyloid β deposition in 
patients with Alzheimer’s disease. Amyloid β deposition was measured with use of Pittsburgh-compound-B PET, and is plotted on the cortical surface. The colour bar 
shows the extent of amyloid β deposition expressed as Z scores. Regions showing high functional connectivity mostly overlap with those showing amyloid β 
deposition in patients with Alzheimer’s disease. Figure ada  pted from Buckner et al,62 by permission of the Society for Neuroscience.
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patients with Alzheimer’s disease or mild cognitive 
impairment retained their hub regions in the frontal lobe 
but not in the temporal lobe.69 Increased inter-regional 
correlations within the local brain lobes and disrupted 
long-distance inter-regional correlations were also 
detected in these patients.69 In patients with Alzheimer’s 
disease, abnormal patterns of white matter connectivity 
have been associated with cognitive defi cits.70

Graph theoretical analysis has also been used to analyse 
resting-state fMRI data from patients with the 
behavioural variant of frontotemporal dementia.71 Global 
and local functional networks were altered in these 
patients, as suggested by reduced mean network degree, 
reduced clustering coeffi  cient and global effi  ciency, and 
increased path length compared with healthy controls. 
Altered brain regions were located in structures that are 
closely associated with neuropathological changes in 
patients with the behavioural variant of frontotemporal 
dementia, such as the frontotemporal lobes and 
subcortical regions. Overall, these fi ndings lend support 
to the theory of the selective susceptibility of large-scale 
brain networks in neurodegenerative disorders.8

Amyotrophic lateral sclerosis
Consistent pathology of motor and extramotor regions of 
the brain lends support to the notion of amyotrophic 
lateral sclerosis as a system failure. Overall functional 
organisation of the motor network (left and right 
precentral cortex) was unchanged in patients with 
amyotrophic lateral sclerosis compared with healthy 
controls, but the level of functional connectedness 
correlated with the rate of disease progression—ie, 

patients with a stronger and more interconnected motor 
network had a more progressive disease course.72

The eff ects of amyotrophic lateral sclerosis on 
structural brain topological organisation have been 
assessed with diff usion tensor imaging and graph 
theoretical analysis.73,74 Although the organisation of the 
global brain network was intact in patients with 
amyotrophic lateral sclerosis, an impaired subnetwork of 
regions with reduced white matter connectivity was 
detected;73 these were centred on primary motor regions 
but also included secondary motor regions (frontal cortex 
and pallidum) and high-order hub regions (posterior 
cingulate cortex and precuneus). More recently, fi ndings 
from a longitudinal study74 have shown no progressive 
impairment of the initially aff ected (motor) connections, 
but a propagating subnetwork of aff ected brain 
connections over time, with a central role for the primary 
motor regions.

Multiple sclerosis
Consistent with the known multifocal distribution of 
structural damage to the CNS, patients with multiple 
sclerosis have a distributed pattern of abnormalities in 
resting-state functional connectivity, which are related to 
the extent of T2 lesions and the severity of clinical 
disability.75 Few studies have applied graph analysis 
methods to analyse structural and functional alterations 
in these patients.

With use of data from resting-state fMRI and 
magnetoencephalography, male patients with multiple 
sclerosis were shown to have reduced network effi  ciency 
but normal clustering coeffi  cients, compared with male 
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controls.76,77 These abnormalities were not detected in 
female patients. Decreases in network effi  ciency in male 
patients were correlated with reduced visuospatial 
memory.76,77 Patients with multiple sclerosis can be 
discriminated from healthy controls by use of a pattern 
recognition technique based on resting-state functional 
connectivity, with a sensitivity of 82% and specifi city of 
86%.78 The most discriminative connectivity changes 
were in the subcortical and temporal regions, and 
contralateral connections were more discriminative than 
were ipsilateral connections.

A graph theory study into correlations of measures of 
cortical thickness from a large cohort of patients with 
multiple sclerosis showed disrupted effi  ciency in small-
world networks, which was proportional to the extent of 
white matter T2 lesions.79 Decreased regional effi  ciency 
in the insula, precentral gyrus, and associative prefrontal 

and temporal cortices was also detected, lending support 
to the notion of multiple sclerosis as a disconnection 
syndrome. With use of diff usion tensor tractography, 
disrupted topological effi  ciency has been detected in 
white matter structural networks of patients with 
multiple sclerosis, with a reduction of the global and 
local network effi  ciency.80 The most pronounced changes 
in this study were identifi ed in the sensorimotor, visual, 
default mode network, and language areas (fi gure 5). 
Such modifi cations of structural connectivity have been 
detected in patients with relapsing-remitting multiple 
sclerosis within 2 years of clinical presentation.81 In these 
patients, loss of network communicability (the total 
number of all possible paths between two nodes) aff ected 
the frontal and hippocampal regions, motor strip, and 
occipital lobes, and was correlated with defi cits in 
walking. Notably, increased communicability between 
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network (corrected for within-group connectivity strength, Si), with increased Li values in olfactory, medial and superior frontal, occipital, and medial temporal pole 
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deep grey matter nuclei and the major interhemispheric 
and intra hemispheric tracts was also detected, which 
might result from compensatory changes.

Schizophrenia
Evidence is accumulating that neural network changes 
underlie structural and functional brain changes in 
psychiatric disorders, and might provide a more sensitive 
measure to detect brain abnormalities than those provided 
by measurements of structural and functional properties 
of separate brain areas alone.25,82 The potential application 
of network approaches to psychiatry are shown by research 
in schizophrenia, a severe psychiatric disorder that has 
long been hypothesised to result from a disconnection 
syndrome. Wernicke83 fi rst proposed that schizophrenia 
might involve disruption of the brain’s association fi bres. 
However, only with the advent of in-vivo imaging, 
particularly after early studies using PET, was experimental 
evidence for this hypothesis identifi ed.84,85 In parallel with 
similar trends in other disorders,86 this work led to the 
development of formal disconnectivity hypotheses for 
schizophrenia.6,87 Sub sequent research suggested a 
potential structural basis for these abnormalities.88 With 
use of connectome reconstruction and analysis, fi ndings 
of several structural and functional studies have shown 
network disruptions in patients with schizophrenia. 
Functional studies of both resting-state and task-related 
functional connectivity,89,90 in addition to investigations 
using EEG,91 have shown clear reductions in the overall 
level of functional coupling in patients with schizophrenia, 
a defi cit that is particularly severe for assumed hub regions 
located in the prefrontal cortex.89 Consistent with these 
functional fi ndings, investigators of structural con nectome 
studies reported disruptions of the connectome, with 
longer communication pathways92,93 and fewer central 
hubs in the brain networks of patients with schizophrenia 
than in those of controls (fi gure 6).25 Generally, these 
fi ndings suggest that schizophrenia might involve a 
reduced global integration of structural brain networks 
and a reduced role for key frontal and parietal hubs in the 
overall network architecture, in turn leading towards 
diminished capacity to integrate information across 
diff erent regions of the brain.7,25 In line with such a 
hypothesis of reduced integration, reduced connectivity 
has been shown between brain network hubs, together 
with decreased coupling between structural and functional 
connectivity, in patients with schizophrenia.94 Thus, more 
than a century after Wernicke’s original ideas about 
schizophrenia, the pathophysiology is being substantiated 
by imaging connectomics.

Conclusions and future directions
Graph theoretical approaches have defi ned network 
topological organisation in both healthy and diseased 
brains to characterise the structural and functional 
abnormalities associated with diff erent neurological and 
psychiatric disorders, and to test hypothesised eff ects of 

disconnectivity in these diseases. Patients with neurological 
and psychiatric disorders have disrupted connectivity in 
functional and structural networks in the brain, which 
might explain some of the clinical manifestations of these 
diseases, including global disability and cognitive 
impairment. However, fi ndings from studies are incon-
sistent, possibly as a result of the clinical heterogeneity of 
the patient groups and diff erences in imaging and 
analytical methods. Future network-based research might 
be used to identify diff erent stages of the diff erent diseases, 
subtypes for cognitive impair ments, and connectivity 
profi les associated with diff erent clinical outcomes.

Challenges for the specialty of MRI-based connectomics 
include development of improved measures and models 
of the directed, weighted, and signed structure of brain 
connectivity, and of accurate techniques to defi ne 
appropriate parcellations of the brain.19,95 Imaging 
techniques to improve the biological validity of measures 
of structural connectivity,96 and the temporal precision of 
fMRI for sampling of functional dynamics,97 are also 
needed.
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